๐ชSliding Window Problems
Practice:
Calculate average temperature in windows of 5 readings from a weather dataset.
Count frequency of words in batches of 10 tweets to find trending terms.
Check for abnormal jumps in a stock price by comparing windows of daily returns.
The key steps are:
Define window size
Perform operation on each window
Slide window and repeat
Analyze results
Calculate average temperature in windows of 5 readings from a weather dataset.
{25.5, 26.2, 24.8, 23.9, 25.1, 26.8, 27.3, 24.6, 23.5, 24.9, 25.7, 26.5};
public class AverageTemperature {
public static void main(String[] args) {
// Assuming temperatureReadings is an array containing the temperature readings
double[] temperatureReadings = {25.5, 26.2, 24.8, 23.9, 25.1, 26.8, 27.3, 24.6, 23.5, 24.9, 25.7, 26.5};
// Initialize variables
int windowSize = 5;
int totalWindows = temperatureReadings.length - windowSize + 1;
double[] averageTemperatures = new double[totalWindows];
// Calculate average temperatures for each window
for (int i = 0; i < totalWindows; i++) {
double sum = 0;
// Calculate sum of temperatures in the window
for (int j = i; j < i + windowSize; j++) {
sum += temperatureReadings[j];
}
// Calculate average temperature for the window
averageTemperatures[i] = sum / windowSize;
}
// Print the average temperatures for each window
for (double averageTemperature : averageTemperatures) {
System.out.println("Average Temperature: " + averageTemperature);
}
}
Counting Frequency of Words in Batches of 10 Tweets
import java.util.HashMap;
import java.util.Map;
public class TrendingTerms {
public static void main(String[] args) {
// Assuming tweets is a list containing the tweets
List<String> tweets = Arrays.asList("tweet1", "tweet2", "tweet3", ...);
// Initialize variables
int batchSize = 10;
int totalBatches = tweets.size() / batchSize;
Map<String, Integer> wordFrequency = new HashMap<>();
// Count the frequency of words in each batch
for (int i = 0; i < totalBatches; i++) {
int startIndex = i * batchSize;
int endIndex = startIndex + batchSize;
// Process each tweet in the batch
for (int j = startIndex; j < endIndex; j++) {
String tweet = tweets.get(j);
String[] words = tweet.split(" ");
// Count the frequency of each word
for (String word : words) {
wordFrequency.put(word, wordFrequency.getOrDefault(word, 0) + 1);
}
}
}
// Print the trending terms and their frequencies
for (Map.Entry<String, Integer> entry : wordFrequency.entrySet()) {
System.out.println("Word: " + entry.getKey() + ", Frequency: " + entry.getValue());
}
}
}
Checking for Abnormal Jumps in Stock Prices
public class AbnormalJumps {
public static void main(String[] args) {
// Assuming dailyReturns is an array containing the daily returns of a stock
double[] dailyReturns = {0.02, -0.03, 0.05, 0.01, -0.02, 0.04, 0.07, -0.01};
// Initialize variables
int windowSize = 3;
int totalWindows = dailyReturns.length - windowSize + 1;
// Check for abnormal jumps in each window
for (int i = 0; i < totalWindows; i++) {
boolean abnormalJump = false;
// Calculate the maximum and minimum returns in the window
double maxReturn = Double.MIN_VALUE;
double minReturn = Double.MAX_VALUE;
for (int j = i; j < i + windowSize; j++) {
double currentReturn = dailyReturns[j];
if (currentReturn > maxReturn) {
maxReturn = currentReturn;
}
if (currentReturn < minReturn) {
minReturn = currentReturn;
}
}
// Check if the difference between max and min returns exceeds a threshold
double threshold = 0.03; // Assuming a 3% threshold for abnormal jumps
if (maxReturn - minReturn > threshold) {
abnormalJump = true;
}
// Print the result for the window
System.out.println("Window: " + (i + 1) + ", Abnormal Jump: " + abnormalJump);
}
}
}
Last updated