QA Interview Handbook
  • ๐Ÿ Home Page
  • About Testing
    • ๐Ÿ’–Qualities of A Great Tester
  • Manual Testing
    • ๐Ÿ’กOverview
      • โœ‹Demand for Software Testing
      • ๐Ÿ˜„Tester's Role in Manual Testing
      • 7๏ธTesting Principles
      • ๐ŸšจV & V
      • โ”Interview Questions
    • โ™ป๏ธSDLC
      • ๐Ÿ“’Phase 1: Planning
      • ๐Ÿ”Phase 2: Requirement Analysis
      • ๐Ÿ‘”Phase 3: Design
      • โ›‘๏ธPhase 4: Development
      • ๐ŸงชPhase 5: Testing
      • ๐ŸššPhase 6: Deployment
      • ๐Ÿ–ฑ๏ธPhase 7: Maintenance
      • โš”๏ธCommon Challenges
      • โ”Interview Questions
    • ๐ŸŒ€STLC
    • ๐ŸŒŠWaterfall
    • โœณ๏ธAgile
      • ๐Ÿ˜Tester's Role in Scrum
    • ๐Ÿ”ขTypes
      • โฌœWhite Box Testing
      • โฌ›Black Box Testing
        • ๐Ÿ”ฐTechniques Used in Black Box Testing
        • ๐Ÿš˜Functional Testing
          • 1๏ธโƒฃUnit Testing
          • 2๏ธโƒฃIntegration Testing
            • ๐Ÿ”ฐTechniques Used in Integration Testing
          • 3๏ธโƒฃSystem Testing
            • ๐Ÿ“ผTypes of System Testing
            • ๐ŸŒŠPhases of System Testing
            • ๐ŸŒ€Regression Testing
            • ๐ŸŒซ๏ธSmoke Testing
          • 4๏ธโƒฃAcceptance Testing
            • โš™๏ธUser Acceptance Testing
            • ๐Ÿ…ฐ๏ธAlpha Testing
            • ๐Ÿ…ฑ๏ธBeta Testing
        • ๐Ÿ•ณ๏ธNon Functional Testing
      • ๐Ÿ“‘Grey Box Testing
    • ๐Ÿช„User Story
      • โบ๏ธSample User Stories
    • ๐Ÿ““Test Cases
      • โบ๏ธSample Test Cases
      • โ”Interview Questions
    • โœ–๏ธDefect Life Cycle
      • โ˜ฃ๏ธPriority + Severity
      • โบ๏ธSample Defect Reports
      • โ”Interview Questions
      • ๐Ÿ›Buggy Questions
    • ๐ŸŒAtlassian JIRA
      • ๐ŸžJIRA Issues
      • โ”Interview Questions
    • โ”Interview Questions
  • Accessibility Testing
    • ๐Ÿ’กOverview
    • ๐Ÿค“Tester's Role in Accessibility Testing
    • ๐Ÿ“šWCAG Principles
      • ๐Ÿ‘๏ธPerceivable
      • ๐ŸนOperable
      • ๐Ÿง Understandable
      • ๐Ÿค–Robust
    • ๐Ÿ”งAxe DevTools
      • โ”Interview Questions
    • ๐Ÿ““Test Cases
    • โ”Interview Questions
  • API Testing
    • ๐Ÿ’กOverview
    • ๐Ÿ˜€Tester's Role in API Testing
    • ๐ŸŠHTTP Methods & CRUD
      • ๐Ÿ‚HTTP Status Codes
    • ๐ŸAPI Tools
      • ๐ŸŸ Postman
        • โ˜„๏ธSending your first API request
        • ๐Ÿ”ฌHTTP Requests with Java
        • ๐ŸŽฒGitHub Sample
        • โ”Interview Questions
      • โ›‘๏ธREST Assured
        • ๐ŸŽ‡Dependency
        • โ”Interview Questions
    • ๐Ÿ““Test Cases
    • ๐ŸฆงAPI Cheatsheet
    • โ”Interview Questions
  • Database Testing
    • ๐Ÿ’กOverview
    • ๐Ÿ˜†Tester's Role in Database Testing
    • ๐Ÿ”ตSQL
      • โ›“๏ธConstraints
      • ๐Ÿ›ข๏ธReferencing a Column
      • ๐Ÿ”ผDDL Commands
      • ๐Ÿ”ผDML Commands
        • ๐Ÿ–Œ๏ธOperators
        • ๐Ÿ› ๏ธFunctions
          • โฏ๏ธAggregate Functions
        • ๐ŸŽ…Clauses
          • โซJoin Clauses
          • ๐Ÿ”ตFilter Clauses
          • โฌSet Operations
      • ๐ŸƒWildcard Character
      • โ”Interview Questions
    • ๐Ÿ““Test Cases
    • ๐ŸงคSQL Practice Sites
    • ๐ŸซSQL Cheatsheet
    • โ”Interview Questions
  • Java
    • โ›ฉ๏ธIntroduction
    • ๐Ÿ˜„Tester's Reason to Learn Java
    • โ“‚๏ธMain Method
      • โ”Interview Questions
    • ๐Ÿ“Variables & Types
      • ๐ŸชขSpecial Types
    • ๐ŸฅModifiers
    • ๐Ÿ…พ๏ธOperators
    • ๐ŸชกString
      • ๐ŸฉบString Methods
        • String Method Problems
      • ๐ŸšจDelimiter
      • โ”Interview Questions
    • ๐Ÿ–‡๏ธConditionals
      • ๐Ÿ’ŽCommon If Statements
      • ๐Ÿ’ŽCommon Ternary Operator Statements
    • โ“‚๏ธMath Class
    • ๐ŸŒŠLoops
      • ๐Ÿ’ŽCommon Loop Examples
      • ๐Ÿ”ƒNested For Loops
    • ๐ŸผOOPS
      • ๐Ÿ›๏ธClasses and Objects
        • โ”Interview Questions
      • ๐ŸŽƒConstructor
        • โšกStatic
          • โ”Interview Questions
        • ๐Ÿ“This() & Super()
          • โ”Interview Questions
        • ๐Ÿ€Finalization
      • ๐Ÿ”“Encapsulation
      • ๐ŸฅInheritance
      • ๐Ÿฆ‹Polymorphism
      • ๐Ÿ•ธ๏ธAbstraction
    • ๐ŸฎJava Practice Sites
    • โ˜‘๏ธData Structures + Algorithms
      • ๐Ÿ…พ๏ธBig O
      • โ˜‘๏ธData Structures
        • ๐Ÿ”ธArray
        • ๐Ÿ”ณArray Problems
        • Page
      • ๐ŸชŸSliding Window Technique
        • ๐ŸชŸSliding Window Problems
        • ๐ŸฅLeetCode #53
        • ๐ŸฅLeetCode #209
    • โ”Interview Questions
  • Automation Testing
    • ๐ŸšฐFlow
      • ๐Ÿ’กOverview
      • ๐ŸคฉTester's Role in Automation Testing
      • ๐Ÿ€Selenium
        • ๐Ÿ•ธ๏ธSelenium WebDriver
          • ๐Ÿ•ท๏ธWebDriver Commands
            • ๐ŸŒWebElement
              • ๐Ÿ”†HTML Tags
              • ๐Ÿ”ฌFind Element(s)
              • ๐ŸฆŽLocators
                • โŒXpath
                • ๐ŸฐCSS Selector
                • ๐Ÿ“€DOM
                • ๐Ÿ Quick Reference for XPath + CSS
            • โœ‹Waits
            • Browser Management
            • ๐ŸŽ๏ธNavigation
            • Alerts
          • ๐Ÿท๏ธAdvanced User Interactions
            • ๐Ÿ—ฏ๏ธAction vs. Actions
            • ๐Ÿ’งDrop Down
            • โœ…Check Box
            • ๐Ÿ–‡๏ธForms
          • โš ๏ธExceptions
        • ๐ŸOOPS + Selenium
        • ๐ŸšขFrameworks
          • โš“Module Based Framework
          • ๐ŸŽนKeyword Driven Framework
          • ๐ŸŽ‹Data Driven Framework
          • ๐ŸŒบHybrid Framework
          • ๐ŸŒดLog4j
          • ๐Ÿ“„Page Object Model
        • ๐ŸงชTesting Frameworks
          • ๐Ÿ’กTestNG
          • ๐Ÿ‰‘JUnit
          • ๐Ÿฅ’BDD
            • ๐Ÿฅ’Cucumber
        • ๐ŸŒ‰Selenium Grid
          • โœ–๏ธDesired Capabilities
        • โ”Interview Questions
      • ๐Ÿ”„API Testing with Selenium
      • โชDatabase Testing with Selenium
      • โ“‚๏ธMaven
      • ๐Ÿ™Git
        • โ”Interview Questions
      • ๐Ÿ•ต๏ธโ€โ™‚๏ธJenkins
        • โ”Interview Questions
      • ๐ŸณDocker
        • โ”Interview Questions
      • ๐Ÿ“™AWS
        • โ”Interview Questions
  • Behavioral
    • ๐Ÿ“ฃMixed Interview Questions
    • โญSTAR Method
      • ๐ŸŒŸSample Responses
Powered by GitBook
On this page
  • Understanding Patterns in Data
  • How sliding windows can be applied to solve problems
  • What is a substring?

Was this helpful?

  1. Java
  2. Data Structures + Algorithms

Sliding Window Technique

PreviousPageNextSliding Window Problems

Last updated 1 year ago

Was this helpful?

Understanding Patterns in Data

The sliding window technique is an algorithmic approach used to analyze sequential data and detect patterns. When working with large datasets, it can be difficult to get meaningful insights by looking at all data at once.

Breaking it Down

With the sliding window method, the data is broken into smaller fixed-size "windows" that can each be processed separately. This makes the data more manageable to study piece-by-piece.

How it Works The size of each window is predefined. Calculations or operations are then performed on the data within each individual window. After a window is processed, it slides forward by a small offset to look at the next set of values. This continues until all data has been analyzed one window at a time.

Putting the Pieces Together By dividing the work into smaller sequential chunks and processing windows incrementally, subtle local trends may emerge that are difficult to spot otherwise. Aggregating information across multiple windows can reveal patterns spanning the entire dataset.

Benefits and Uses This technique is well suited for data that involves ordered values changing over time, such as financial data or sensor measurements. It helps reduce complexity while aiding discovery of meaningful short and long-term patterns in data.

How sliding windows can be applied to solve problems

  • Frequency analysis: Count frequent/popular items in subsets (e.g. most common words in snippets of text). Useful for signals processing, recommendation systems, etc.

  • Anomaly detection: Find abnormal patterns by comparing values in windows to thresholds or each other over time. Good for fraud detection, system monitoring.

  • Smoothing/averaging: Calculate average, sum or other aggregate over windows to reduce noise or highlight trends over time. Bioscience, financial data.

What is a substring?

A substring is a contiguous sequence of characters within a string.

For example:

If the sample string is "hello", some substrings would be:

  • "h"

  • "he"

  • "ell"

  • "lo"

  • The whole string "hello" is also a substring

The key aspects of a substring are:

  • It consists of characters together in sequence from the original string

  • It can be of any length from 1 character up to the full length of the string

  • The characters must be contiguous/next to each other

โ˜‘๏ธ
๐ŸชŸ
Sliding Window Algorithm TechniqueMedium
Logo